variables.

- **‡P3Ge**mploy mathematical techniques to assess the quality of data and find the suitable specification for different types of datasets.
 - Engage in lifelong learning, reflective thinking and self-assessment.
 - Communicate effectively in verbal, written and group contexts to a professional standard.

TEACHING STRATEGIES

The teaching strategies that will be used and their rationale. Give some suggested approaches to learning in the course.

(An example of the approaches to learning are)

Private Study	Review lecture material and textbook
	 Do set problems and assignments
	Join Moodle discussions of problems
	 Reflect on class problems and assignments
	Download materials from Moodle
	 Keep up with notices and find out marks via Moodle
Lectures	Find out what you must learn
	See methods that are not in the textbook
	 Follow worked examples
	Hear announcements on course changes
Workshops	Be guided by Demonstrators
	Practice solving set problems
	< Ask questions
Assessments	Demonstrate your knowledge and skills
	Demonstrate higher understanding and problem solving
Laboratory Work	Hands-on work, to set studies in context

EXPECTED01Lang (enAU); BDC 4635m2535m2535m25370 1 2i18F610 Tf516refH3D 2f2ang (enAU); 0enAU

COURSE PROGRAM

A table of lectures and workshops or practical class topics for each week, indicating the name of lecturer involved (where multiple lecturers teaching in course), online activities, such as discussion forums, and relevant readings from textbook and other reference material identified for the course.

Term 2 2020

Date	Topic	Lecture Content	Demonstration Content		
04/06/2020	Introduction to transport	Basics of econometrics	Introduction to R		
(Week 1)	modelling	Review of statistics and			
	Statistical inference	probabilities			
		Statistical hypothesis testing			
11/06/2020	Statistical inference	Two-variable regression	Running regression in R		
(Week 2)	Regression analysis	assumptions			
		Dummy variables			
18/06/2020	Regression analysis	Multiple regression analysis	Running multiple regression		
(Week 3)		Multicollinearity	in R		
		Count data			
25/06/2020	Regression model	Heteroscedasticity	Heteroscedasticity and		
(Week 4)	troubleshooting	Autocorrelation	autocorrelation		
02/07/2020	Regression Model	Time series formulations and	Running time series in R		
(Week 5)	Time Series	Count Data			
09/07/2020		Flexibility week for all			
(Week 6)		courses (non-teaching)			
16/07/2020	Discrete choice	Basic definitions	Running logit with biogeme		
(Week 7)		Choice set			
		Logit models			
23/07/2020	Discrete choice	Nested logit	Running nested logit with		
(Week 8)			biogeme		
30/07/2020	Discrete choice	Ordered logit	Running survival analysis in		
(W & 4&9)			biogeme		

Assignment 1 and quiz 1 – Linear regression

Assignment 2 and quiz 2 - Count and time series regression

Assignment 3 and quiz 3 - Discrete choice models

Format of the assignments:

- Have a cover letter.
- Each question starts from the top of the page
- Reference your work appropriately, if not, you may be penalized for plagiarism.

rep18(r)8(0) ordre-200 of G.775 636.ro

ASSESSMENT OVERVIEW

Item	Available date	Weighting	Learning outcomes assessed	Assessment Criteria (this needs to explicitly describe what students are expected to demonstrate in the task)	Due date	Deadline for absolute fail	Marks returned
1.Quizzes							
Quiz 1	18/06/2020 10:00	3	Comprehensive understanding of basic statistics and probabilities	Students will be assessed based on the accuracy and validity of their submitted solutions to the questions.	18/06/2020 10:15	18/06/2020 10:15	18/06/2020 10:15
Quiz 2	25/06/2020 10:00	3	Understanding about the basic assumptions behind linear regression models.	Students will be assessed based on the accuracy and validity of their submitted solutions to the questions.	25/06/2020 10:15	25/06/2020 10:15	25/06/2020 10:15
Quiz 3	02/07/2020 10:00	3	Potential troubles resulting from violating the assumptions and common remedies for them.	Students will be assessed based on the accuracy and validity of their submitted solutions to the questions.	02/07/2020 10:15	02/07/2020 10:15	02/07/2020 10:15
Quiz 4	16/07/2020 10:00	3	Time series regression and count data	Students will be assessed based on the accuracy and validity of their submitted solutions to the questions.	16/07/2020 10:15	16/07/2020 10:15	16/07/2020 10:15
Quiz 5	06/08/2020 10:00	3	Discrete choice modelling	Students will be assessed based on the accuracy and validity of their submitted solutions to the questions.	06/08/2020 10:15	06/08/2020 10:15	06/08/2020 10:15

2. Assessments

Assignment 1 11/06/2020 15

RELEVANT RESOURCES

Material essential for this course is provided in lecture notes available through Moodle. Suggested references are listed below:

- Gujarati, D.N. (2004) Basic Econometrics, 4th Edition, McGraw Hill
- Casella, G., and R.L. Berger (2001) Statistical Inference, 2nd Edition, Duxbury Press
- Train, K. (2009) Discrete Choice Methods with Simulation, 2nd Edition, Cambridge University Press

,