

School of Civil and Environmental Engineering
Term 2, 2021

CVEN4202 ADVANCED TOPICS IN GEOTECHNICAL ENGINEERING

COURSE DETAILS

Units of Credit 6

Contact hours 5 hours per week

Class Wednesday, 11:00 – 14:00 Online (weeks 1-4) and Online and

Friday, 10:00 – 12:00 Face to Face (weeks 5, 7-10)

Online (weeks 1-4) and Online and Face to Face (CE 201) (weeks 5, 7-

10)

Lecturer and Dr Asal Bidarmaghz

Course email: a.bidarmaghz@unsw.edu.au

Coordinator office: CVEN, Room 502

INFORMATION ABOUT THE COURSE

Students enrolling in this HANDBOOK DESCRIPTION

See link to virtual handbook:

https://www.handbook.unsw.edu.au/undergraduate/courses/2021/CVEN4202/

OBJECTIVES

This course

TEACHING STRATEGIES

Private Study	Review lecture material and textbook							
	Do set problems and assignments							
	Join Moodle discussions of problems							
	Reflect on class problems and assignments							
	Download materials from Moodle							
	Keep up with notices and find out marks via Moodle							
Lectures	Find out what you must learn							
	See methods that are not in the textbook							
	Follow worked examples							
	Hear announcements on course changes							
	Ask questions							
Workshops	Be guided by Demonstrators/Lecturers							
	Practice solving set problems							
	Ask questions							
Assessments	Demonstrate your knowledge and skills							
	Demonstrate higher understanding and problem solving							
Laboratory Work	Hands-on work, to set studies in the context							

EXPECTED LEARNING OUTCOMES

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

Lea	arning Outcome	EA Stage 1 Competencies
1.	Understand the concept and applications of ground energy systems. To gain insights into designs and evaluations of these systems via hand calculations and computational modelling.	1.1, 1.3, 1.4, 1.5, 2.1, 2.2
2.	Understand the basic principles of heat and mass transfer in porous medium, to simulate soil systems hydro-thermal behaviour.	1.1, 1.3, 1.4, 1.5, 2.1, 2.2
3.	Using finite element method to solve geo-energy problems, including geothermal energy systems and their interaction with the ground.	1.1, 1.3, 1.4, 1.5, 2.1, 2.2

For each hour of contact it is expected that you will put in at least 1.5 hours of private study.

COURSE PROGRAM

Term 2 2021

Week 1	Introduction to shallow geothermal systems.
Week 2	The common design approaches for shallow geothermal systems (analytical methods).
Week 3	Heat and mass transfer mechanisms in the context of shallow geothermal systems (analytical solutions)
Week 4	Introduction to thermal response testing (TRT) and energy geo-structures Introduction to computational modelling of ground-energy systems

Week 5	Introduction to the finite element package COMSOL Multiphysics (General heat and mass transfer modelling and analysis – computer lab)
Week 6	Flexibility week for all courses (non-teaching)
Week 7	Closed-loop vertical borehole heat exchangers (FE modelling – computer lab) Assignment 2 briefing
Week 8	Heat conduction and convection in porous medium (FE modelling – computer lab) Project presentation
Week 9	Shallow vs Deep geothermal systems (concepts and FE modelling, computer lab)
Week 10	Underground urban heat island modelling (3D vs semi-3D methods) Assignment 2 discussion and problem solving

ASSESSMENT OVERVIEW

Item	Topics	Weight	Learning outcomes assessed	Learning outcomes assessed	Due date	Deadline for absolute fail	Marks returned
Assignment 1	Energy Geotechnics Concept	10%	1, 3	Weeks 1,2 and 3	23 June 2021 11:59 pm	NA	26 th June 2021

Presentation

Energy Geo-

RELEVANT RESOURCES

Part 1:

1. Banks, D. "An Introduction to Thermogeology", Wiley and Backwell, 2012.