

COURSE DETAILS

Units of Credit 6

Contact hours 6 hours per week

Class Tuesday, 17:00 – 20:00 Weeks 1 - 5 & 7 – 10:

Online through Blackboard Collaborate Ultra

Workshop Thursday, 10:00 – 13:00 Weeks 1 - 5 & 7 – 10:

or 13:00 – 16:00 Online through Blackboard Collaborate Ultra

Course Coordinator & Divya Jayakumar Nair

Lecturer email: divya.nair@unsw.edu.au

office: Room 103, H20

Lecturer David Rey

email: d.rey@unsw.edu.au
office: Room 105, H20

INFORMATION ABOUT THE COURSE

A course in optimization and modelling for first year engineering students who desire a higher capability in the application of the mathematical modelling of engineering systems, and seek to acquire a set of optimization tools which can be applied to various engineering applications.

This course is targeted to students in the Faculty of Engineering desiring a greater understanding of how to model various complex systems, including critical infrastructure (e.g., telecommunications, water supply, and transport). This course will provide an introduction to the interdisciplinary concepts and approaches applied by engineers in advanced systems modelling.

The expected outcomes of this course are reinforced capability in optimization theory with a view to apply the concepts learned to the analysis of engineering systems, the ability to implement mathematical models to represent, analyse and optimize various engineering systems, and gain the modelling and optimization tools needed for their studies in the field of Engineering.

HANDBOOK DESCRIPTION

OBJECTIVES

Learning objectives of the course are:

To reinforce a student's capability in modelling and apply the concepts learned to the analysis of engineering systems.

To introduce students to the fundamental optimization tools and concepts applied by engineers in advanced systems modelling.

To abstract a complex technical system into quantitative models and/or qualitative frameworks that represent that system.

To analyse and optimize various engineering systems with the abstracted models.

Provide a foundation in modelling and optimization tools needed for their studies in the field of Engineering.

TEACHING STRATEGIES0838ddm03 (11.)4 (\$ 1.36)57jH2TC /1S-d.5073S-53 S0.889422 ou59fw 11.e4 (S-01)67jH2TC /1S-d.5073S-191.S 1.285 d186

COURSE PROGRAM

Term 2 2021

Date	Lecture Content	Demonstration Content	
01/06/2021	Introduction to linear and integer	Linear and integer programming:	
(Week 1)	programming	practice / Introduction to AMPL	
08/06/2021	Transportation and assignment problems	First steps in AMPL: practice problems	
(Week 2)	Transportation and assignment problems		
15/06/2021	Network optimisation: shortest path,	Shortest path and network flow problems: practice	
(Week 3)	minimum cost flow and network design		
22/06/2021	Packing the knapsack and portfolio	Knapsack problem: practice	
(Week 4)	optimisation		
01/07/2021	Facility location problem	Facility location problem: practice	
(Week 5)	& Group project briefing		
06/07/2021	Non-teaching week for all courses		
(Week 6)	Non-teaching week for an courses		
13/07/2021	Travelling salesman problem	Travelling salesman problem: practice	
(Week 7)	& Group project Q&A		
20/07/2021	Vehicle routing problem	The vehicle routing problem: practice	
(Week 8)	& Group project Q&A		
27/07/2021	Draiget schoduling, time is manay	Schoduling problems, practice	
(Week 9)	Project scheduling: time is money	Scheduling problems: practice	
03/08/2021	Introduction to multi-objective optimisation:	Multi-objective optimisation problems:	
(Week 10)	ek 10) transit route design & Course review practice		

ASSESSMENT

The final grade for this course will be based on the sum of the scores from the assignments and the final examination. For the values of the single components see the table below:

Strand	Assessment	Weighting	Assessment Criteria
	1		Weekly online quizzes will be administered via Moodle during weeks 2, 4, 7,
			8 and 10. Moodle quiz will be available on Thursdays' between 4PM and
			6PM. The Moodle quizzes will be based on the material covered in lectures
			and workshops. The Moodle quizzes will be open book, and are intended to
1	Moodle	10%	help prepare the students for the final examination. The weekly
1	Quizzes	assessments also provide a means for con	assessments also provide a means for continuous assessment and feedback
			for students throughout the cPTw 21.25349.1 (o)-7.1 (n)-9.1 (t5r(d)-t5r().6 (ot.3 (7.1 (n)-9.1)

Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

	Program Intended Learning Outcomes		
	PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals		
dge Se	PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing		
owler III Ba	PE1.3 In-depth understanding of specialist bodies of knowledge		
PE1: Knowledge and Skill Base	PE1.4 Discernment of knowledge development and research directions		
PE1 an	PE1.5 Knowledge of engineering design practice		
	PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice		
ring n	PE2.1 Application of established engineering methods to complex problem solving		
PE2: Engineering Application Ability	PE2.2 Fluent application of engineering techniques, tools and resources		
Eng pplic	PE2.3 Application of systematic engineering synthesis and design processes		
PE2	PE2.4 Application of systematic approaches to the conduct and management of engineering projects		
tes	PE3.1 Ethical conduct and professional accountability		
onal	PE3.2 Effective oral and written communication (professional and lay domains)		
fessional Att	PE3.3 Creative, innovative and pro-active demeanour		
PE3: Professional and Personal Attributes	PE3.4 Professional use and management of information		
PE3	PE3.5 Orderly management of self, and professional conduct		
an	PE3.6 Effective team membership and team leadership		