

NAVL3620 SHIP HYDRODYNAMICS

C, , , –

1.	Staff contact details	.3
	Contact details and consultation times for course convenor	. 3
	Contact details and consultation times for additional lecturers/demonstrators/lab staff	. 3
2.	Course details	. 3
	Credit Points	.3

Student learning outcomes

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

Le	arning Outcome	EA Stage 1 Competencies		
1.	Describe the flow around bluff and streamlined bodies, and			
	to discuss the benefits of streamlining.	PE2.2, PE2.3		
2	Calculate the pressure distribution around a body in a wind-			

16/10/17	12	Manoeuvrability standards and high- performance rudders. High-performance craft (hydrofoils, ACVs SES, etc.).	
23/10/17	13	Revision and exam details tutorial.	

*** Visit to AMC/University of Tasmania in Launceston

There will be a visit to the Australian Maritime College in Launceston, Tasmania, on the Thursday and Friday of Week 7, departing Sydney on Wednesday 6 September and returning Friday evening 8 September. The visit is to acquaint you with the facilities available including the towing tank for resistance and seakeeping tests, the cavitation tunnel, the model basin, the flume tank, the shiphandling simulator, etc., and the calculations required to extrapolate the resistance and seakeeping results to full size.

Exam	(c) Hydrofoil lift, drag and cavitation.	60%	All	week 10.	Examinatio n period:	submission]1.6(k)-6.6(1
4	(a) Towing tankcalcs and report.(b) Accelerationand deceleration	10%	1-7	Lecture material up to	Week 11: 13/10/17	2 weeks	

For further information on exams, please see the

Papers from Fast Sea Transportation (FAST) conferences.

Papers from Fast Ferry International (FFI) conferences.

Additional materials provided in Moodle

This course has a website on Moodle which includes:

• copies

8. A a $_{\scriptscriptstyle 1}$ $_{\scriptscriptstyle 1}$ $_{\scriptscriptstyle 1}$ $_{\scriptscriptstyle 2}$ $_{\scriptscriptstyle 3}$ $_{\scriptscriptstyle 4}$ $_{\scriptscriptstyle 1}$ a $_{\scriptscriptstyle 1}$ a $_{\scriptscriptstyle 7}$

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. *Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.*

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:

- Attendance, Participation and Class Etiquette
- UNSW Email Address
- Computing Facilities
- <u>Assessment Matters</u> (including guidelines for assignments, exams and special consideration)
- Academic Honesty and Plagiarism
- Student Equity and Disabilities Unit
- Health and Safety
- Student Support Services

David Lyons FRINA 20 June 2017

Course Outline: NAVL3620

A A: E A A A A (EA) C Stage 1 Competencies for Professional Engineers

	Program Intended Learning Outcomes			
	PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals			
PE1: Knowledge and Skill Base	PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing			
Knowledg Skill Base	PE1.3 In-depth understanding of specialist bodies of knowledge			
: K	PE1.4 Discernment of knowledge development and research directions			
PE1: I	PE1.5 Knowledge of engineering design practice			
	PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice			
ing ility	PE2.1 Application of established engineering methods to complex problem solving			
וeer א ר	PE2.2 Fluent application of engineering techniques, tools and resources			
PE2: Engineering Application Ability	PE2.3 Application of systematic engineering synthesis and design processes			
PE2 App	PE2.4 Application of systematic approaches to the conduct and management of engineering projects			
_	PE3.1 Ethical conduct and professional accountability			
PE3: Professional and Personal Attributes	PE3.2 Effective oral and written communication (professional and lay domains)			
: Professi nd Person Attributes	PE3.3 Creative, innovative and pro-active demeanour			
3: Pr Ind F Atti	PE3.4 Professional use and management of information			
PE:	PE3.5 Orderly management of self, and professional conduct			
	PE3.6 Effective team membership and team leadership			

Course Outline: NAVL3620